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Abstract. Analytic solutions are found for the two-site correlations of certain highly 
symmetric models of crystal growth disorder. These solutions include the case of the 
second-neighbour square lattice king model susceptibility at the conjectured disorder 
point. The general correlations satisfy a factorisation property conjectured by Welberry. 

1. Introduction 

In a series of recent papers a two-dimensional model of the growth of disordered 
mixed crystals has been investigated (Welberry and Galbraith 1973, 1975, Welberry 
1977a, b). The crystal growth model was used to study the way in which crystal 
structure and consequent x-ray diffraction patterns depended on the underlying 
probabilities associated with the crystal growth. The original work was largely based 
on simulations of model crystals by digital computer, the simulated structures being 
used as masks to produce diffraction patterns by direct optical means (Welberry and 
Galbraith 1973). A special case of the model, the linear case described below, was 
solved analytically. 

A new technique for obtaining further solutions for growth models arose from the 
observation that the probability distributions arising in these models form a subset of 
the probability distributions for generalised Ising models in statistical mechanics and 
that the Ising model formation shows explicitly any symmetry implicit in a growth 
model (Enting 1977a). Welberry (1977a) pointed out that such symmetry conditions 
give information that can be used to obtain new solutions. One such solution turned 
out to include a special solution, s c l ,  of the non-linear model previously solved by 
Welberry and Galbraith (1975) using other special analytic properties occurring in this 
case (see Welberry 1977b for further details of this model and Enting 1977b for the 
relation of the most symmetric case of scl to Ising model series expansions). 

Another technique that can be used to solve a small class of growth models was 
introduced by Verhagen (1976) who related the probabilities to those of one-dimen- 
sional processes. 

In the present paper we obtain expressions for the two-site correlations of some of 
the special models investigated by Welberry (1977a). There are four main reasons 
why such an investigation is of interest. 
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(i) The two-site correlations p ( r )  lead to the intensity distribution of diffraction 
through the relation (Guinier 1963) 

~ ( k )  = C exp(2.rrik. r)[(cfi + (1 - c)f$+p(r)c(I - c)(fi - f 2 ) 2 ] .  (1.1) 

Here k is a vector in reciprocal space, c is the concentration of type 1 molecules and fi  

and f 2  are the two form factors. 
(ii) Welberry (1977a) has suggested that for models with rectangular symmetry 

defined in terms of lattice vectors U ,  b correlations have the form 

r 

p(na +mb)=x"'y'"' .  (1.2) 

The solutions obtained below confirm this conjecture for all values of m and n in the 
zero-field case. 

(iii) In statistical mechanics, continuous (second-order) phase transitions generally 
correspond to divergences in x ( k )  for some appropriate k while for first-order 
transitions, in many of the approximate solutions divergences in x ( k )  indicate the 
limits of regions of metastability. The studies of growth models indicate that no such 
models with all probabilities non-zero can correspond to an Ising model at a phase 
transition but that as appropriate probabilities vanish the growth models exhibit 
behaviour typical of the approach to a phase transition. In the growth model context 
phase transitions can be regarded as being cases when finite effects from the boun- 
daries persist for arbitrarily large distances. Correlation function solutions can be 
used to investigate the approach to phase transitions. 

(iv) Enting (1977a) pointed out that many of the simplest growth models appeared 
to correspond to Ising models at their disorder points. Disorder points are points at 
which the behaviour of correlation functions changes from monotonic to oscillatory. 
Approximate expressions for correlation functions were used by Stephenson (197 1) 
and Enting (1973) to locate disorder points. The accuracy of such approximations in 
the disorder point region can be tested once exact solutions are available at the 
disorder point. 

Enting (1977a) showed how growth model correlations could be obtained from the 
equation and obtained parametric expressions for correlations on the axes of a 
square-symmetric zero-field growth model. The form of the solutions indicated that 
the form of the decay was a sum of exponentials. The more detailed analysis below 
shows that even for the more general rectangular symmetry, the parametrisation is 
'degenerate' so that there is only a simple exponential decay. 

Other techniques of obtaining growth niodel correlations have been described by 
Pickard (1977, 1978) and, for the special case of a triangular Ising model at its 
disorder point, by Gibberd (1969). 

2. Zero-field crystal growth models 

The growth models that we consider are defined on a square lattice of sites r = ia +jb 
denoted by the pairs of integers ( i , j ) .  The presence of one of the two types of 
molecule at each site can be denoted by any convenient two-valued variable. Follow- 
ing Enting (1977a) we use Ising spin variables uii = *l .  Welberry uses xii = &rii + 1) = 
Oor 1. 
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Formally the growth model begins by considering the joint probability distribution 
P({gii}) of the set of uii and assumes that it can be expressed as a product of factors Pij 
which are conditional probabilities of adding a molecule of type vii at site (i, j )  given 
the existing crystal configuration. For completeness we need to define a set of 
boundary sites {(i, j ) :  i + j  = m} along which the aii are taken as fixed. 

In mathematical terms the assumptions of the growth model state that 

P({aij)) = n n Pi,n-i. 
n>m i 

We restrict our investigations to Pii of the form 

The zero-field condition refers to the fact that (2 .2 )  is invariant under changing the 
sign of all uii so that the two types of molecule are treated equivalently and will each 
have a concentration of 4. The linear case mentioned above corresponds to putting 
C = 0 in (2.2).  Enting (1977a) has shown how to relate the probability distribution 
P({crii}) to the probability distributions associated with Gibbs states of the Ising model 
in statistical mechanics. In the Ising model formalism the symmetries of the model are 
explicit and so the conditions required for symmetries of P ( { q } )  can be readily 
obtained. Welberry (1977a) obtains the same conditions for symmetry by considering 
special points in the distribution P ( { q } )  directly. 

To obtain a rectangular lattice symmetry in the model generated by ( 2 . 2 )  Welberry 
shows that one must have 

- 2 A D  = (1 - 2 C ) B .  (2 .3 )  

(The notation A, B, C, D is not that of Welberry (1977a) but is a slightly generalisa- 
tion (introducing D # A )  of that used by Enting (1977a).) 

Square lattice symmetry is imposed by setting A = D  in addition to constraint 

The technique for obtaining equations connecting various expectation values is 
described by Welberry and Galbraith (1973). If the set of aii considered in the 
probability distribution is denoted U = {gii: i + j  > m }  then 

(2 .3) .  

( f ( U ) > =  1 P ( U ) f ( U ) =  ui,eU 1 ( n>m n n p k , n - k ) f ( U ) *  k (2.4) 
Uli E U 

The sum is over all combinations of the values *1 for each q. We now define a set 
T = {q: p + q  > i + j >  m }  and consider 
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where we have used the most general growth model expression for Pw, 
Pw =i+u,g(T) .  

We actually use equation (2.2) for Pw and with a properly chosen set of functions 
h ( T )  the symmetry conditions lead to a closed set of equations for correlations. 

In all the work on analytic solutions it is assumed that the points considered are 
sufficiently far from the boundaries for the correlation functions to depend only on the 
relative positions of the sites involved and not on the absolute position in the lattice. 
This assumption is discussed in the final section. From (2.5), 

p ( r ) =  ( u & p - - i , q - j )  

= 2 A p ( r  - a ) +  2Dp(r - b ) + 2 B p ( r - a  - b)+ 2Cu(r-a  - 6 )  (2.6) 

0 (r ) = ( u p ~ p +  1 , F p . q  + 1 u p - i , q -  j ) 

= ( u p q ~ p +  1 .@p,q - 1 u p  - i,q - j ) 

= 2 A p ( r  + b ) +  2Du(+r’ - 6 ) +  2Bp(r)+ 2Cp(r +a  + b )  (2.7) 

where r = ia + jb and r’ = ia -jb. Rectangular lattice symmetry gives p ( r )  = p(r‘ )  and 
the equation of expectation values in (2.7). (Actually the derivation of (2.7) requires a 
larger set of sites in the set U than implied by (2.5). The formalism remains valid so 
long as the set U does not include sites for which (p, 4) is a predecessor (see Enting 
1977a). This condition restricts (2.7) to r = ia + jb such that i S O . )  

The derivation of correlations along the axes follows that used by Enting (1977a) 
for the A = D case. 

We put 

an = A n a )  ( 2 . 8 ~ )  

b , = p ( n a + b )  (2.86) 

cn = u((n - 1)a - b )  

d,  = ~ ( ( n  - 1 ) ~ ) .  

( 2 . 8 ~ )  

(2 .8d)  

Equation (2.6) gives 

a, = 2AanPl + 2Dbn + 2Bbn-1 + 2 C ~ n  (using r = nu)  ( 2 . 9 ~ )  

and 

6, = 2Ab,-l+2Da, +2Ba,-1+2Cdn (using r = nu + b ) .  (2.9b) 

Equation (2.7) gives 

d,  = 2AbnP1 + 2Dc, + 2Ba,-1 + 2Cb, (using r = (n  - 1 ) a )  ( 2 . 9 ~ )  

and 

C, = 2Aa,-1 + 2Dd, + 2Bbn-1 + 2Ca, (using r = ( n  - 1)a - b). 
(2.9d) 

These equations lead to two pairs of equations 

( 1  ~ 2 D ) ( ~ ~ * b ~ ) = ( 2 A * 2 B ) ( ~ n - i * b n - i ) + 2 C ( c n * d n )  ( 2 . 1 0 ~ )  

( 1 ~ 2 D ) ( ~ , * d , ) = ( 2 A * 2 B ) ( ~ , - 1 * b n - 1 ) + 2 C ( a n  *bn).  (2.10b) 
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Eliminating cn * d, gives 

[(l  ~ 2 D ) 2 - 4 C 2 ] ( a , * b , ) =  ( 2 A  *.2B)(1 T20+2C)(an-1*b,- l )  
(2.11) 

whence 

In general this would mean, as stated by Enting (1977a), that a, and b, would decay 
as the sum of two exponentials. However, application of the rectangular symmetry 
constraint (2.3) shows that 

2 A + 2 B  - 2 A - 2 B  
1 - 2 0  - 2 C -  1 + 2 D - 2 C '  

This means that 

a,  * b, = ~ , ( l *  0 )  

U ,  =p(TUZ)= T n  

b, = p ( n a k b ) = d " '  

T =  ( 2 A - 2 B ) / ( 1 + 2 0 - 2 C ) .  

Interchanging axes gives 

p(nb)  = Bn 

p(nb * a )  = 76, 

8 = ( 2 0  - 2 B ) / ( 1 + 2 A  - 2 C ) .  

(2.12) 

( 2 . 1 3 ~ )  

(2.13b) 

( 2 . 1 3 ~ )  

(2.14a) 

(2.14b) 

( 2 . 1 4 ~ )  

Beginning from these axial correlations we can build u p  longer-range correlations 
p(ma + nb)  by induction on m + n. This is we assume p(m'a + n 'b)= T"8"' for m'+ 
n' < m + n and on the basis of this assumption show p(ma + n b )  = TmBn.  

The equations that we use are from (2.6) 

p ( r  + U  + b )  = 2ABp(r)+ 2 D ~ p ( r ) +  2Bp(r)+ 2Cu (r ) ;  (2.15a) 

from (2.7) 

~ ( r )  = 2A8p(r)+ 2 D ~ ( r '  - b)+ 2Bp ( r )  + 2Cp(r + U + 6 )  (2.15b) 

and 

ZI (r' - b )  = 2 A p ( r )  + 2Du ( r )+  2BBp(r)+ 2CTp(r). ( 2 . 1 5 ~ )  

These are three linear equations in p ( r + a  + b ) ,  u(r )  and u(r'--6) valid for r =  
nu + mb, m, n > 0. The equations can be simplified somewhat by using the relations 

DT+B=O 

AB+B=O 

( 2 . 1 6 ~ )  

(2.166) 

which are obtained from (2.13c), ( 2 . 1 4 ~ )  subject to constraint (2.3). 
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Except in special cases when probabilities take on limiting values of 0 and 1 the 
solution will be unique. We show that (2.1%-c) are satisfied by 

( 2 . 1 7 ~ )  

(2.176) 

v ( r ’ -b )=  7p(r) .  ( 2 . 1 7 ~ )  

Substituting these values into (2.15a), (2.15b) leads to 78 = -2B +2C78 in each case, 
an equation that is satisfied by (2.13c), ( 2 . 1 4 ~ )  subject to (2.3). Equation (2.1%) 
reduces to T = 2A +2Cr which is satisfied by ( 2 . 1 3 ~ )  subject to constraint (2.3). 

The key solution is ( 2 . 1 7 ~ )  which, when combined with (2.13a), (2.14a), confirms 
the conjecture made by Welberry that 

p(ma + nb) = 71mle1n1. (2.18) 

3. Conclusions 

The solutions obtained in the previous section give useful information about each of 
the four points discussed in the introduction. Firstly and most obviously the con- 
jecture of (2.18) by Welberry has been confirmed. Secondly this solution leads 
immediately to a simple expression for the order-disorder contribution to the 
diffraction expression (1.1): 

e x p ( 2 d .  r )p(r )  = I(7, 27rk,)I(8, 27rk,) 
I 

where 

1-a2  
I (a ,  6) = 1 - 2 ~  cosb+a2’  (3.2) 

With regard to phase transitions it is clear from (2.18) that long-range correlations 
occur in these models only when 7 = 1 or 8 = 1, which happens only when some of the 
underlying growth model properties go to 1 or 0. Thus the solutions for the class of 
models solved above confirm the properties that have been deduced from simulations. 

The complete solutions for correlations strengthen the arguments given by Enting 
(1977a) for identifying various crystal growth models with Ising models at their 
disorder points. Not only is the axial correlation simpler than previously believed, 
since the two exponential factors found by Enting actually correspond to the 
degenerate case of a single exponential decay, but, in addition we have now seen that 
correlations in all directions have a simple exponential decay. 

Following the results of Enting (1977a) we put 

X = Po* = PTs = (1 -P;)(l -PT)= i+A +B + C +D 

W =Pz = PT1= (1 -Pyz)= (1 -PT)= $ - A  +D + B  - C 

exp(-8PK) = YW(1 -X)(1 -Z) /XZ(l -  Y)(1- W )  

(3.3a) 

(3.3c) 

(3.4a) 

Y = P; = PZ = (1 -PTO) = (1 - PT) = 4 + A  - D + B - C (3.3b) 

2 = Pz = Pg* = (1 - P T d ) =  (1 -PT)=$-A + B + C - D  (3.3d) 
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exp(-4PJY)= (1 - W)Z/X(l  - Y )  

exp(-4PJX)= (1 - Y)Z/X( l -  W) 

(3.46) 

(3.4c) 

(3.4d) 

(3.4e) 

exp(-8PJ,)= WY(1- W)(1- Y)/XZ(l -X)(1 - Z )  

exp(-8PJ~) = (1 - W)(1 -X)( l -  Y)(1 -Z) /XYZW 

where JI, Jz,  J,, J, and K are the interaction strengths in the corresponding Ising 
model. The four-spin interaction is K, the nearest-neighbour interactions are J, and 
J,, and the second-neighbour interactions are J1 and Jz. 

The parametrisation in terms of A, B, C, D gives one constraint on the Ising 
interaction parameters. Applying the requirement of rectangular symmetry, J1= 52, 
leads to (2.3), a second constraint on the interactions. The condition for the four-spin 
interaction to vanish is 

4B2C+4D2C-8ABD-  C -4C3+4A2C = O  (3.5) 

so that one has a second-neighbour Ising model with rectangular symmetry. Subject 
to constraints (2.3) and (3.5) the full square lattice symmetry is achieved by the single 
additional constraint A = D, leading to three constraints on the values A, B, C, D and 
a second-neighbour Ising model with one constraint. Enting (1977a) conjectured that 
this constraint defined the disorder point temperature. For small values of the 
interaction the constraints led to an approximate relation of the form 

The relation for a wider range of values is plotted in figure 3 of Enting (1977a). 
As remarked in the introduction there are other techniques which have been used 

for obtaining correlations in growth models. The graphical techniques used by Gib- 
berd (1969) for the anisotropic triangular Ising model are simple in that case but to 
apply the techniques directly to more complicated systems such as the second- 
neighbour square lattice Ising model or models in non-zero fields would require 
awkward parametrisations of the interactions. 

One promising approach seems to be to find a graphical formulation of the 
techniques used in § 2 since the growth model parametrisation given in equation (2.2) 
(or its generalisation to non-zero field) seems to be most appropriate for expressing 
the solutions of these models. 

For some classes of growth models Pickard’s (1977a, 1978)results bypass all these 
approaches by demonstrating an exponential decay of the correlations by considering 
a specialised probabilistic characterisation of the systems, and without constructing 
explicit solutions. While these solutions cover a large number of systems, Pickard has 
pointed out that there are systems for which his techniques do not apply but for which 
the growth model equations can be solved using the techniques of 0 2. 
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